"Characterization and structure of the Aquifex aeolicus protein DUF752: a bacterial tRNA-methyltransferase (MnmC2) functioning without the usually fused oxidase domain (MnmC1)."

Kitamura A, Nishimoto M, Sengoku T, Shibata R, Jager G, Bjork GR, Grosjean H, Yokoyama S, Bessho Y...

Published 2012-10-22 in J Biol Chem .

Pubmed ID: 23091054
DOI identifier: -

Posttranscriptional modifications of the wobble uridine (U34) of tRNAs play a critical role in reading NNA/G codons belonging to split codon boxes. In a subset of Escherichia coli tRNA, this wobble uridine is modified to 5-methylaminomethyluridine (mnm(5)U34) through sequential enzymatic reactions. Uridine-34 is first converted to 5-carboxymethylaminomethyluridine (cmnm(5)U34) by the MnmE/MnmG enzyme complex. The cmnm(5)U34 is further modified to mnm(5)U by the bifunctional MnmC protein. In the first reaction, the FAD-dependent oxidase domain (MnmC1) converts cmnm(5)U into 5-aminomethyluridine (nm(5)U34), and this reaction is immediately followed by the methylation of the free amine group into mnm(5)U34 by the AdoMet-dependent domain (MnmC2). Aquifex aeolicus lacks a bifunctional MnmC protein fusion, and instead encodes the Rossmann-fold protein DUF752, which is homologous to the methyltransferase MnmC2 domain of E. coli MnmC (26 % identity). Here we determined the crystal structure of the A. aeolicus DUF752 protein at 2.5 A resolution, which revealed that it catalyzes the AdoMet-dependent methylation of nm(5)U in vitro, to form mnm(5)U34 in tRNA. We also showed that naturally occurring tRNA from A. aeolicus contains the 5-mnm group attached to the C5 atom of U34. Taken together, these results support the recent proposal of an alternative MnmC1-independent shortcut pathway for producing mnm(5)U34 in tRNAs.

This publication refers to following proteins:

Last modification of this entry: Oct. 29, 2012