"Identification and characterization of a human tRNA-specific adenosine deaminase related to the ADAR family of pre-mRNA editing enzymes."

Maas S, Gerber AP, Rich A...



Published 1999-08-03 in Proc Natl Acad Sci U S A volume 96 .

Pubmed ID: 10430867
DOI identifier: -

Abstract:
The mammalian adenosine deaminases acting on RNA (ADARs) constitute a family of sequence-related proteins involved in pre-mRNA editing of nuclear transcripts through site-specific adenosine modification. We report here the identification and characterization of a human ADAR protein, hADAT1, that specifically deaminates adenosine 37 to inosine in eukaryotic tRNA(Ala). It represents the functional homologue of the recently identified yeast protein Tad1p [Gerber, A., Grosjean, H., Melcher, T. & Keller, W. (1998) EMBO J. 17, 4780-4789]. The hADAT1 cDNA predicts a protein of 502 aa whose sequence displays strongest overall homology to a Drosophila melanogaster ORF (50% similarity, 32% identity), and the catalytic domain is closely related to the other ADAR proteins. In vitro, the recombinantly expressed and purified hADAT1 protein efficiently and specifically deaminates A(37) in the anticodon loop of tRNA(Ala) from higher eukaryotes and with lower efficiency from lower eukaryotes. It does not modify adenosines residing in double-stranded RNA or in pre-mRNAs that serve as substrates for ADAR1 or ADAR2. The anticodon stem-loop of tRNA(Ala) alone is not a functional substrate for hADAT1. The enzyme is expressed ubiquitously in human tissues and is represented by a single gene. The identification and cloning of hADAT1 should help to elucidate the physiological significance of this unique modification in tRNA(Ala), which is conserved from yeast to man.


This publication refers to following proteins:



Last modification of this entry: Sept. 13, 2012