"Isolation and characterization of a human cDNA for mRNA 5'-capping enzyme."

Yamada-Okabe T, Doi R, Shimmi O, Arisawa M, Yamada-Okabe H



Published 1998-04-01 in Nucleic Acids Res volume 26 .

Pubmed ID: 9512541
DOI identifier: -

Abstract:
The human mRNA 5'-capping enzyme cDNA was identified. Three highly related cDNAs, HCE1 (human mRNAcappingenzyme1), HCE1A and HCE1B , were isolated from a HeLa cDNA library. The HCE1 cDNA has the longest ORF, which can encode a 69 kDa protein. A short region of 69 bp in the 3'-half of the HCE1 ORF was missing in HCE1A and HCE1B , and, additionally, HCE1B has an early translation termination signal, which suggests that the latter two cDNAs represent alternatively spliced product. When expressed in Escherichia coli as a fusion protein with glutathione S -transferase, Hce1p displayed both mRNA 5'-triphosphatase (TPase) and mRNA 5'-guanylyltransferase (GTase) activities, and it formed a cap structure at the 5'-triphosphate end of RNA, demonstrating that it indeed specifies an active mRNA 5'-capping enzyme. The recombinant proteins derived from HCE1A and HCE1B possessed only TPase activity. When expressed from ADH1 promoter, HCE1 but not HCE1A and HCE1B complemented Saccharomyces cerevisiae CEG1 and CET1 , the genes for GTase and TPase, respectively. These results demonstrate that the N-terminal part of Hce1p is responsible for TPase activity and the C-terminal part is essential for GTase activity. In addition, the human TPase domain cannot functionally substitute for the yeast enzyme in vivo.


This publication refers to following proteins:



Last modification of this entry: Sept. 6, 2012