"Site-selected introduction of modified purine and pyrimidine ribonucleosides into RNA by automated phosphoramidite chemistry."

Agris PF, Malkiewicz A, Kraszewski A et al.

Published 1994-09-08 in Biochimie .

Pubmed ID: 7599270
DOI identifier: 10.1016/0300-9084(96)88115-6

The study of modified nucleoside contributions to RNA chemistry, structure and function has been thwarted by the lack of a site-selected method of incorporation which is both versatile and adaptable to present synthetic technologies. A reproducible and versatile site-selected incorporation of nine differently modified nucleosides into hepta- and octadecamer RNAs has been achieved with automated phosphoramidite chemistry. The 5'-O-(4,4'-dimethoxytrityl-2'-O-tert-butyldimethylsilyl-ribonucleoside- 3'-O-(2-cyanoethyl-N,N-diisopropyl)phosphoramidite syntheses of m5C, D, psi, riboT, s2U, mnm5U, m1G and m2A were designed for compatibility with the commercially available major and 2'OH methylated ribonucleoside phosphoramidites. The synthesis of the m5C phosphoramidite was uniquely designed, and the first syntheses and incorporation of the two modified purine ribonucleosides are reported in detail along with that of psi, s2U, and mnm5U. Cleavage of RNA product from the synthesis support column, deprotection of the RNA, its purification by HPLC and nucleoside composition analysis are described. Modified nucleoside-containing tRNA domains were synthesized and purified in mumol quantities required for biophysical, as well as biochemical, studies. The anticodon domain of yeast tRNA(Phe) was synthesized with modified nucleosides introduced at the native positions: Cm32, Gm34, m1G37 (precursor to Y), psi 39 and m5C40. The T loop and stem was synthesized with riboT54 and the D loop and stem with D16 and D17. The E coli tRNA(Glu2) anti-codon codon domain was synthesized with mnm5U at wobble position 34, but an attempt at incorporating s2U at the same position failed. The unprotected thio group was labile to the oxidation step of the cyclical process. Chemically synthesized anticodon and T domains have been used in assays of tRNA structure and function (Guenther et al (1994) Biochimie 76, 1143-1151).

Last modification of this entry: 2012-03-16 14:29:39.687065
Edited by a user: mark
Edited content: Changed doi.